API Reference
The following types are used in the type signatures below
type DoneCallback = (error?: any) => void
type Awaitable<T> = T | PromiseLike<T>
type TestFunction = () => Awaitable<void> | (done: DoneCallback) => void
When a test function returns a promise, the runner will wait until it is resolved to collect async expectations. If the promise is rejected, the test will fail.
For compatibility with Jest, TestFunction can also be of type (done: DoneCallback) => void. If this form is used, the test will not be concluded until done is called (with zero arguments or a falsy value for a successful test, and with a truthy error value as argument to trigger a fail). We don't recommend using this form, as you can achieve the same using an async function.
test
Type:
(name: string, fn: TestFunction, timeout?: number) => voidAlias:
ittestdefines a set of related expectations. It receives the test name and a function that holds the expectations to test.Optionally, you can provide a timeout (in milliseconds) for specifying how long to wait before terminating. The default is 5 seconds, and can be configured globally with testTimeout
import { test, expect } from 'vitest' test('should work as expected', () => { expect(Math.sqrt(4)).toBe(2); })
test.skip
Type:
(name: string, fn: TestFunction, timeout?: number) => voidAlias:
it.skipIf you want to skip running certain tests, but you don't want to delete the code due to any reason, you can use
test.skipto avoid running them.import { test, assert } from 'vitest' test.skip("skipped test", () => { // Test skipped, no error assert.equal(Math.sqrt(4), 3); });
test.only
Type:
(name: string, fn: TestFunction, timeout?: number) => voidAlias:
it.onlyUse
test.onlyto only run certain tests in a given suite. This is useful when debugging.Optionally, you can provide a timeout (in milliseconds) for specifying how long to wait before terminating. The default is 5 seconds, and can be configured globally with testTimeout.
import { test, assert } from 'vitest' test.only("test", () => { // Only this test (and others marked with only) are run assert.equal(Math.sqrt(4), 2); });
test.concurrent
Type:
(name: string, fn: TestFunction, timeout?: number) => voidAlias:
it.concurrenttest.concurrentmarks consecutive tests to be run them in parallel. It receives the test name, an async function with the tests to collect, and an optional timeout (in milliseconds).import { describe, test } from 'vitest' // The two tests marked with concurrent will be run in parallel describe("suite", () => { test("serial test", async() => { /* ... */ }); test.concurrent("concurrent test 1", async() => { /* ... */ }); test.concurrent("concurrent test 2", async() => { /* ... */ }); });test.skip,test.only, andtest.todoworks with concurrent tests. All the following combinations are valid:test.concurrent(...) test.skip.concurrent(...), test.concurrent.skip(...) test.only.concurrent(...), test.concurrent.only(...) test.todo.concurrent(...), test.concurrent.todo(...)
test.todo
Type:
(name: string) => voidAlias:
it.todoUse
test.todoto stub tests to be implemented later. An entry will be shown in the report for the tests so you know how many tests you still need to implement.// An entry will be shown in the report for this test test.todo("unimplemented test");
describe
When you use test in the top level of file, they are collected as part of the implicit suite for it. Using describe you can define a new suite in the current context, as a set of related tests and other nested suites. A suite lets you organize your tests so reports are more clear.
import { describe, test } from 'vitest'
const person = {
isActive: true,
age: 32,
};
describe('person', () => {
test('person is defined', () => {
expect(person).toBeDefined()
});
test('is active', () => {
expect(person.isActive).toBeTruthy();
});
test('age limit', () => {
expect(person.age).toBeLessThanOrEqual(32);
});
});
You can also nest describe blocks if you have a hierarchy of tests:
import { describe, test, expect } from 'vitest'
const numberToCurrency = (value) => {
if (typeof value !== 'number') {
throw new Error(`Value must be a number`);
}
return value.toFixed(2).toString().replace(/\B(?=(\d{3})+(?!\d))/g, ",");
}
describe('numberToCurrency', () => {
describe('given an invalid number', () => {
test('composed of non-numbers to throw error', () => {
expect(() => numberToCurrency('abc')).toThrow();
});
});
describe('given a valid number', () => {
test('returns the correct currency format', () => {
expect(numberToCurrency(10000)).toBe('10,000.00');
});
});
});
describe.skip
Type:
(name: string, fn: TestFunction) => voidUse
describe.skipin a suite to avoid running a particular describe block.import { describe, test } from 'vitest' describe.skip("skipped suite", () => { test("sqrt", () => { // Suite skipped, no error assert.equal(Math.sqrt(4), 3); }); });
describe.only
Type:
(name: string, fn: TestFunction) => voidUse
describe.onlyto only run certain suites// Only this suite (and others marked with only) are run describe.only("suite", () => { test("sqrt", () => { assert.equal(Math.sqrt(4), 3); }); }); describe('other suite', () => { // ... will be skipped });
describe.concurrent
Type:
(name: string, fn: TestFunction, timeout?: number) => voiddescribe.concurrentin a suite marks every tests as concurrent// All tests within this suite will be run in parallel describe.concurrent("suite", () => { test("concurrent test 1", async() => { /* ... */ }); test("concurrent test 2", async() => { /* ... */ }); test.concurrent("concurrent test 3", async() => { /* ... */ }); });.skip,.only, and.todoworks with concurrent suites. All the following combinations are valid:describe.concurrent(...) describe.skip.concurrent(...), describe.concurrent.skip(...) describe.only.concurrent(...), describe.concurrent.only(...) describe.todo.concurrent(...), describe.concurrent.todo(...)
describe.todo
Type:
(name: string) => voidUse
describe.todoto stub suites to be implemented later. An entry will be shown in the report for the tests so you know how many tests you still need to implement.// An entry will be shown in the report for this suite describe.todo("unimplemented suite");
expect
Type:
ExpectStatic & (actual: any) => Assertionsexpectis used to create assertions. In this contextassertionsare functions that can be called to assert a statement. Vitest provideschaiassertions by default and alsoJestcompatible assertions build on top ofchai.For example, this code asserts that an
inputvalue is equal to2. If it's not, assertion will throw an error, and the test will fail.import { expect } from 'vitest' const input = Math.sqrt(4) expect(input).to.equal(2) // chai API expect(input).toBe(2) // jest APITechnically this example doesn't use
testfunction, so in the console you will see Nodejs error instead of Vitest output. To learn more abouttest, please read next chapter.Also,
expectcan be used statically to access matchers functions, described later, and more.
not
TODO
toBe
Type:
(value: any) => Awaitable<void>toBecan be used to assert if primitives are equal or that objects share the same reference. It is equivalent of callingexpect(Object.is(3, 3)).toBe(true). If the objects are not the same, but you want check if their structures are identical, you can usetoEqual.For example, the code below checks if the trader has 13 apples.
import { test, expect } from 'vitest' const stock = { type: 'apples', count: 13 } test('stock has 13 apples', () => { expect(stock.type).toBe('apples') expect(stock.count).toBe(13) }) test('stocks are the same', () => { const refStock = stock // same reference expect(stock).toBe(refStock) })Try not to use
toBewith floating-point numbers. Since JavaScript rounds them,0.1 + 0.2is not strictly0.3. To reliably assert floating-point numbers, usetoBeCloseToassertion.
toBeCloseTo
Type:
(value: number, numDigits?: number) => Awaitable<void>Use
toBeCloseToto compare floating-point numbers. The optionalnumDigitsargument limits the number of digits to check after the decimal point. For example:import { test, expect } from 'vitest' test.fails('decimals are not equal in javascript', () => { expect(0.2 + 0.1).toBe(0.3); // 0.2 + 0.1 is 0.30000000000000004 }); test('decimals are rounded to 5 after the point', () => { // 0.2 + 0.1 is 0.30000 | "000000000004" removed expect(0.2 + 0.1).toBeCloseTo(0.3, 5); // nothing from 0.30000000000000004 is removed expect(0.2 + 0.1).not.toBeCloseTo(0.3, 50); });
toBeDefined
Type:
() => Awaitable<void>toBeDefinedasserts that the value is not equal toundefined. Useful use case would be to check if function returned anything.import { test, expect } from 'vitest' const getApples = () => 3 test('function returned something', () => { expect(getApples()).toBeDefined() })
toBeUndefined
Type:
() => Awaitable<void>Opposite of
toBeDefined,toBeUndefinedasserts that the value is equal toundefined. Useful use case would be to check if function hasn't returned anything.import { test, expect } from 'vitest' function getApplesFromStock(stock) { if(stock === 'Bill') return 13 } test('mary doesnt have a stock', () => { expect(getApplesFromStock('Mary')).toBeUndefined() })
toBeTruthy
Type:
() => Awaitable<void>toBeTruthyasserts that the value is true, when converted to boolean. Useful if you don't care for the value, but just want to know it can be converted totrue.For example having this code you don't care for the return value of
stocks.getInfo- it maybe complex object, a string or anything else. The code will still work.import { Stocks } from './stocks' const stocks = new Stocks() stocks.sync('Bill') if(stocks.getInfo('Bill')) { stocks.sell('apples', 'Bill') }So if you want to test that
stocks.getInfowill be truthy, you could write:import { test, expect } from 'vitest' import { Stocks } from './stocks' const stocks = new Stocks() test('if we know Bill stock, sell apples to him', () => { stocks.sync('Bill') expect(stocks.getInfo('Bill')).toBeTruthy() })Everything in JavaScript is truthy, except
false,0,'',null,undefined, andNaN.
toBeFalsy
Type:
() => Awaitable<void>toBeFalsyasserts that the value is false, when converted to boolean. Useful if you don't care for the value, but just want to know it can be converted tofalse.For example having this code you don't care for the return value of
stocks.stockFailed- it may return any falsy value, but the code will still work.import { Stocks } from './stocks' const stocks = new Stocks() stocks.sync('Bill') if(!stocks.stockFailed('Bill')) { stocks.sell('apples', 'Bill') }So if you want to test that
stocks.stockFailedwill be falsy, you could write:import { test, expect } from 'vitest' import { Stocks } from './stocks' const stocks = new Stocks() test('if Bill stock hasnt failed, sell apples to him', () => { stocks.syncStocks('Bill') expect(stocks.stockFailed('Bill')).toBeFalsy() })Everything in JavaScript is truthy, except
false,0,'',null,undefined, andNaN.
toBeNull
Type:
() => Awaitable<void>toBeNullsimply asserts if something isnull. Alias for.toBe(null).import { test, expect } from 'vitest' function apples() { return null } test('we dont have apples', () => { expect(apples()).toBeNull() })
toBeNaN
Type:
() => Awaitable<void>toBeNaNsimply asserts if something isNaN. Alias for.toBe(NaN).import { test, expect } from 'vitest' let i = 0 function getApplesCount() { i++ return i > 1 ? NaN : i } test('getApplesCount has some unusual side effects...', () => { expect(getApplesCount()).not.toBeNaN() expect(getApplesCount()).toBeNaN() })
toBeInstanceOf
Type:
(c: any) => Awaitable<void>toBeInstanceOfasserts if an actual value is instance of received class.import { test, expect } from 'vitest' import { Stocks } from './stocks' const stocks = new Stocks() test('stocks are instance of Stocks', () => { expect(stocks).toBeInstanceOf(Stocks) })
toBeGreaterThan
Type:
(n: number | bigint) => Awaitable<void>toBeGreaterThanasserts if actual value is greater than received one. Equal values will fail the test.import { test, expect } from 'vitest' import { getApples } from './stock' test('have more then 10 apples', () => { expect(getApples()).toBeGreaterThan(10) })
toBeGreaterThanOrEqual
Type:
(n: number | bigint) => Awaitable<void>toBeGreaterThanOrEqualasserts if actual value is greater than received one or equal to it.import { test, expect } from 'vitest' import { getApples } from './stock' test('have 11 apples or more', () => { expect(getApples()).toBeGreaterThanOrEqual(11) })
toBeLessThan
Type:
(n: number | bigint) => Awaitable<void>toBeLessThanasserts if actual value is less than received one. Equal values will fail the test.import { test, expect } from 'vitest' import { getApples } from './stock' test('have less then 20 apples', () => { expect(getApples()).toBeLessThan(20) })
toBeLessThanOrEqual
Type:
(n: number | bigint) => Awaitable<void>toBeLessThanOrEqualasserts if actual value is less than received one or equal to it.import { test, expect } from 'vitest' import { getApples } from './stock' test('have 11 apples or less', () => { expect(getApples()).toBeLessThanOrEqual(11) })
toEqual
Type:
(received: any) => Awaitable<void>toEqualasserts if actual value is equal to received one or has the same structure, if it is an object (compares them recursively). You can see the difference betweentoEqualandtoBein this example:import { test, expect } from 'vitest' const stockBill = { type: 'apples', count: 13 } const stockMary = { type: 'apples', count: 13 } test('stocks have the same properties', () => { expect(stockBill).toEqual(stockMary) }) test('stocks are not the same', () => { expect(stockBill).not.toBe(stockMary) })WARNING
A deep equality will not be performed for
Errorobjects. To test if something was thrown, usetoThrowassertion.
toStrictEqual
Type:
(received: any) => Awaitable<void>toStrictEqualasserts if actual value is equal to received one or has the same structure, if it is an object (compares them recursively), and of the same type.Differences from
.toEqual:- Keys with
undefinedproperties are checked. e.g.{a: undefined, b: 2}does not match{b: 2}when using.toStrictEqual. - Array sparseness is checked. e.g.
[, 1]does not match[undefined, 1]when using.toStrictEqual. - Object types are checked to be equal. e.g. A class instance with fields
aandbwill not equal a literal object with fieldsaandb.
import { test, expect } from 'vitest' class Stock { constructor(type) { this.type = type } } test('structurally the same, but semantically different', () => { expect(new Stock('apples')).toEqual({ type: 'apples' }) expect(new Stock('apples')).not.toStrictEqual({ type: 'apples' }) })- Keys with
toContain
Type:
(received: string) => Awaitable<void>toContainasserts if actual value is in an array.toContaincan also check whether a string is a substring of another string.import { expect, test } from 'vitest' import { getAllFruits } from './stock' test('the fruit list contains orange', () => { expect(getAllFruits()).toContain('orange'); })
toContainEqual
Type:
(received: any) => Awaitable<void>toContainEqualasserts if an item with a specific structure and values is contained in an array. It works liketoEqualinside for each element.import { test, expect } from 'vitest' import { getFruitStock } from './stock' test("apple available", () => { expect(getFruitStock()).toContainEqual({ fruit: 'apple', count: 5 }) })
toHaveLength
Type:
(received: number) => Awaitable<void>toHaveLengthasserts if an object has a.lengthproperty and it is set to a certain numeric value.import { test, expect } from 'vitest' test('toHaveLength', () => { expect('abc').toHaveLength(3); expect([1, 2, 3]).toHaveLength(3); expect('').not.toHaveLength(3); // doesn't have .length of 3 expect({ length: 3 }).toHaveLength(3) })
toHaveProperty
Type:
(key: any, received?: any) => Awaitable<void>toHavePropertyasserts if a property at provided referencekeyexists for an object.You can provide an optional value argument also known as deep equality, like the
toEqualmatcher to compare the received property value.import { test, expect } from 'vitest' const invoice = { isActive: true, customer: { first_name: 'John', last_name: 'Doe', location: 'China', }, total_amount: 5000, items: [ { type: 'apples', quantity: 10, }, { type: 'oranges', quantity: 5, }, ] } test('John Doe Invoice', () => { expect(invoice).toHaveProperty('isActive') // assert that the key exists expect(invoice).toHaveProperty('total_amount', 5000) //assert that the key exists and the value is equal expect(invoice).not.toHaveProperty('account') //assert that this key does not exist // Deep referencing using dot notation expect(invoice).toHaveProperty('customer.first_name') expect(invoice).toHaveProperty('customer.last_name', 'Doe') expect(invoice).not.toHaveProperty('customer.location', 'India') // Deep referencing using an array containing the key expect(invoice).toHaveProperty('items[0].type', 'apples') expect(invoice).toHaveProperty('items.0.type', 'apples') // dot notation also works })
toMatch
Type:
(received: string | regexp) => Awaitable<void>toMatchasserts if a string matches a regular expression or a string.import { expect, test } from 'vitest' test('top fruits', () => { expect('top fruits include apple, orange and grape').toMatch(/apple/) expect('applefruits').toMatch('fruit') // toMatch also accepts a string })
toMatchObject
Type:
(received: object | array) => Awaitable<void>toMatchObjectasserts if an object matches a subset of the properties of an object.You can also pass an array of objects. This is useful if you want to check that two arrays match in their number of elements, as opposed to
arrayContaining, which allows for extra elements in the received array.import { test, expect } from 'vitest' const johnInvoice = { isActive: true, customer: { first_name: 'John', last_name: 'Doe', location: 'China', }, total_amount: 5000, items: [ { type: 'apples', quantity: 10, }, { type: 'oranges', quantity: 5, } ] } const johnDetails = { customer: { first_name: 'John', last_name: 'Doe', location: 'China', } } test('invoice has john personal details', () => { expect(johnInvoice).toMatchObject(johnDetails) }) test('the number of elements must match exactly', () => { // Assert that an array of object matches expect([{ foo: 'bar' }, { baz: 1 }]).toMatchObject([ { foo: 'bar' }, { baz: 1 }, ]) })
toThrowError
Type:
(received: any) => Awaitable<void>toThrowErrorasserts if a function throws an error when it is called.For example, if we want to test that
getFruitStock('pineapples')throws, because pineapples is not good for people with diabetes, we could write:You can provide an optional argument to test that a specific error is thrown:
- regular expression: error message matches the pattern
- string: error message includes the substring
TIP
You must wrap the code in a function, otherwise the error will not be caught and the assertion will fail.
import { test, expect } from 'vitest' function getFruitStock(type) { if (type === 'pineapples') { throw new DiabetesError('Pineapples is not good for people with diabetes') } // Do some other stuff } test('throws on pineapples', () => { // Test that the error message says "diabetes" somewhere: these are equivalent expect(() => getFruitStock('pineapples')).toThrowError(/diabetes/) expect(() => getFruitStock('pineapples')).toThrowError('diabetes') // Test the exact error message expect(() => getFruitStock('pineapples')).toThrowError( /^Pineapples is not good for people with diabetes$/, ) })
// snapshots
toMatchSnapshot
toMatchInlineSnapshot
toThrowErrorMatchingSnapshot
toThrowErrorMatchingInlineSnapshot
toHaveBeenCalled
toHaveBeenCalledTimes
toHaveBeenCalledWith
toHaveBeenLastCalledWith
toHaveBeenNthCalledWith
toHaveReturned
toHaveReturnedTimes
toHaveReturnedWith
toHaveLastReturnedWith
toHaveNthReturnedWith
resolves
Type:
Promisify<Assertions>resolvesis intended to remove boilerplate when asserting asynchronous code. Use it to unwrap value from pending promise and assert its value with usual assertions. If promise rejects, the assertion will fail.It returns the same
Assertionsobject, but all matchers are now returnPromise, so you would need toawaitit. Also works withchaiassertions.For example, if you have a function, that makes an API call and returns some data, you may use this code to assert its return value:
import { test, expect } from 'vitest' function buyApples() { return fetch('/buy/apples').then(r => r.json()) } test('buyApples returns new stock id', async () => { // toEqual returns a promise now, so you HAVE to await it await expect(buyApples()).resolves.toEqual({ id: 1 }) })WARNING
If the assertion is not awaited, then you will have a false-positive test that will pass every time. To make sure that assertions are actually happened, you may use
expect.assertions(number).
rejects
Type:
Promisify<Assertions>rejectsis intended to remove boilerplate when asserting asynchronous code. Use it to unwrap reason why promise was rejected, and assert its value with usual assertions. If promise successfully resolves, the assertion will fail.It returns the same
Assertionsobject, but all matchers are now returnPromise, so you would need toawaitit. Also works withchaiassertions.For example, if you have a function that fails when you call it, you may use this code to assert the reason:
import { test, expect } from 'vitest' function buyApples(id) { if(!id) { throw new Error('no id') } } test('buyApples throws an error when no id provided', async () => { // toThrow returns a promise now, so you HAVE to await it await expect(buyApples()).rejects.toThrow('no id') })WARNING
If the assertion is not awaited, then you will have a false-positive test that will pass every time. To make sure that assertions are actually happened, you may use
expect.assertions(number).
expect.assertions
Type:
(count: number) => voidAfter the test has passed or failed verifies that curtain number of assertions was called during a test. Useful case would be to check if an asynchronous code was called.
For examples, if we have a function than asynchronously calls two matchers, we can assert that they were actually called.
import { test, expect } from 'vitest' async function doAsync(...cbs) { await Promise.all( cbs.map((cb, index) => cb({ index })) ) } test('all assertions are called', async () => { expect.assertions(2); function callback1(data) { expect(data).toBeTruthy(); } function callback2(data) { expect(data).toBeTruthy(); } await doAsync(callback1, callback2); })
expect.hasAssertions
Type:
(count: number) => voidAfter the test has passed or failed verifies that at least one assertion was called during a test. Useful case would be to check if an asynchronous code was called.
For example, if you have a code that calls a callback, we can make an assertion inside a callback, but the test will always pass, if we don't check if an assertion was called.
import { test, expect } from 'vitest' import { db } from './db' const cbs = [] function onSelect(cb) { cbs.push(cb) } // after selecting from db, we call all callbacks function select(id) { return db.select({ id }).then(data => { return Promise.all( cbs.map(cb => cb(data)) ) }) } test('callback was called', async () => { expect.hasAssertions() onSelect((data) => { // should be called on select expect(data).toBeTruthy(); }) // if not awaited, test will fail // if you dont have expect.hasAssertions(), test will pass await select(3) })
// asymmetric matchers
expect.anything
expect.any
expect.arrayContaining
expect.not.arrayContaining
expect.objectContaining
expect.not.objectContaining
expect.stringContaining
expect.not.stringContaining
expect.stringMatching
expect.not.stringMatching
expect.addSnapshotSerializer
expect.extend
Setup and Teardown
These functions allows you to hook into the life cycle of tests to avoid repeating setup and teardown code. They apply to the current context: the file if they are used at the top-level or the current suite if they are inside a describe block.
beforeEach
Type:
beforeEach(fn: () => Awaitable<void>, timeout?: number)Register a callback to be called before each of the tests in the current context runs. If the function returns a promise, Vitest waits until the promise resolve before running the test.
Optionally, you can pass a timeout (in milliseconds) defining how long to wait before terminating. The default is 5 seconds.
import { beforeEach } from 'vitest' beforeEach(async () => { // Clear mocks and add some testing data after before each test run await stopMocking() await addUser({ name: 'John'}) })Here, the
beforeEachensures that user is added for each test.
afterEach
Type:
afterEach(fn: () => Awaitable<void>, timeout?: number)Register a callback to be called after each one of the tests in the current context completes. If the function returns a promise, Vitest waits until the promise resolve before continuing.
Optionally, you can a timeout (in milliseconds) for specifying how long to wait before terminating. The default is 5 seconds.
import { afterEach } from 'vitest' afterEach(async () => { await clearTestingData() // clear testing data after each test run })Here, the
afterEachensures that testing data is cleared after each test runs.
beforeAll
Type:
beforeAll(fn: () => Awaitable<void>, timeout?: number)Register a callback to be called once before starting to run all tests in the current context. If the function returns a promise, Vitest waits until the promise resolve before running tests.
Optionally, you can provide a timeout (in milliseconds) for specifying how long to wait before terminating. The default is 5 seconds.
import { beforeAll } from 'vitest' beforeAll(async () => { await startMocking() // called once before all tests run })Here the
beforeAllensures that the mock data is set up before tests run
afterAll
Type:
afterAll(fn: () => Awaitable<void>, timeout?: number)Register a callback to be called once after all tests have run in the current context. If the function returns a promise, Vitest waits until the promise resolve before continuing.
Optionally, you can provide a timeout (in milliseconds) for specifying how long to wait before terminating. The default is 5 seconds.
import { afterAll } from 'vitest' afterAll(async () => { await stopMocking() // this method is called after all tests run })Here the
afterAllensures thatstopMockingmethod is called after all tests run.
Vi
Vitest provides utility functions to help you out through it's vi helper. You can import { vi } from 'vitest' or access it globally (when global configuration is enabled).
vi.advanceTimersByTime
Type:
(ms: number) => VitestWorks just like
runAllTimers, but will end after passed milliseconds. For example this will log1, 2, 3and will not throw:let i = 0 setInterval(() => console.log(++i), 50) vi.advanceTimersByTime(150)
vi.advanceTimersToNextTimer
Type:
() => VitestWill call next available timer. Useful to make assertions between each timer call. You can chain call it to manage timers by yourself.
let i = 0 setInterval(() => console.log(++i), 50) vi.advanceTimersToNextTimer() // log 1 .advanceTimersToNextTimer() // log 2 .advanceTimersToNextTimer() // log 3
vi.clearAllTimers
Removes all timers that are scheduled to run. These timers will never run in the future.
vi.fn
Type:
(fn: Function) => CallableMockInstanceCreates a spy on a function, though can be initiated without one. Every time a function is invoked, it stores its call arguments, returns and instances. Also, you can manipulate its behavior with methods. If no function is given, mock will return
undefined, when invoked.const getApples = vi.fn(() => 0) getApples() expect(getApples).toHaveBeenCalled() expect(getApples).toHaveReturnedWith(0) getApples.mockReturnOnce(5) const res = getApples() expect(res).toBe(5) expect(getApples).toHaveReturnedNthTimeWith(1, 5)
vi.getMockedSystemTime
Type:
() => Date | nullReturns mocked current date that was set using
setSystemTime. If date is not mocked, will returnnull.
vi.getRealSystemTime
Type:
() => numberWhen using
vi.useFakeTimers,Date.nowcalls are mocked. If you need to get real time in milliseconds, you can call this function.
vi.mock
Type: (path: string, factory?: () => unknown) => void
Makes all imports to passed module to be mocked. Inside a path you can use configured Vite aliases.
- If
factoryis defined, will return its result. Factory function can be asynchronous. You may callvi.importActualinside to get the original module. The call tovi.mockis hoisted to the top of the file, so you don't have access to variables declared in the global file scope! - If
__mocks__folder with file of the same name exist, all imports will return its exports. For example,vi.mock('axios')with<root>/__mocks__/axios.tsfolder will return everything exported fromaxios.ts. - If there is no
__mocks__folder or a file with the same name inside, will call original module and mock it. (For the rules applied, see algorithm.)
vi.setSystemTime
Type:
(date: string | number | Date) => voidSets current date to the one that was passed. All
Datecalls will return this date.Useful if you need to test anything that depends on the current date - for example luxon calls inside your code.
const date = new Date(1998, 11, 19) vi.useFakeTimers() vi.setSystemTime(date) expect(Date.now()).toBe(date.valueOf()) vi.useRealTimers()
vi.mocked
Type:
<T>(obj: T, deep?: boolean) => MaybeMockedDeep<T>Type helper for TypeScript. In reality just returns the object that was passed.
import example from './example' vi.mock('./example') test('1+1 equals 2' async () => { vi.mocked(example.calc).mockRestore() const res = example.calc(1, '+', 1) expect(res).toBe(2) })
vi.importActual
Type:
<T>(path: string) => Promise<T>Imports module, bypassing all checks if it should be mocked. Can be useful if you want to mock module partially.
vi.mock('./example', async () => { const axios = await vi.importActual('./example') return { ...axios, get: vi.fn() } })
vi.importMock
Type:
<T>(path: string) => Promise<MaybeMockedDeep<T>>Imports a module with all of its properties (including nested properties) mocked. Follows the same rules that
vi.mockfollows. For the rules applied, see algorithm.
vi.restoreCurrentDate
Type:
() => voidRestores
Dateback to its native implementation.
vi.runAllTicks
Type:
() => VitestCalls every microtask. These are usually queued by
proccess.nextTick. This will also run all microtasks scheduled by themselves.
vi.runAllTimers
Type:
() => VitestThis method will invoke every initiated timer until the timers queue is empty. It means that every timer called during
runAllTimerswill be fired. If you have an infinite interval, it will throw after 10 000 tries. For example this will log1, 2, 3:let i = 0 setTimeout(() => console.log(++i)) let interval = setInterval(() => { console.log(++i) if (i === 2) { clearInterval(interval) } }, 50) vi.runAllTimers()
vi.runOnlyPendingTimers
Type:
() => VitestThis method will call every timer that was initiated after
vi.useFakeTimers()call. It will not fire any timer that was initiated during its call. For example this will only log1:let i = 0 setInterval(() => console.log(++i), 50) vi.runOnlyPendingTimers()
vi.spyOn
Type:
<T, K extends keyof T>(object: T, method: K, accessType?: 'get' | 'set') => MockInstanceCreates a spy on a method or getter/setter of an object.
let apples = 0 const obj = { getApples: () => 13, } const spy = vi.spyOn(obj, 'getApples').mockImplementation(() => apples) apples = 1 expect(obj.getApples()).toBe(1) expect(spy).toHaveBeenCalled() expect(spy).toHaveReturnedWith(1)
vi.unmock
Type: (path: string) => void
Removes module from mocked registry. All subsequent calls to import will return original module even if it was mocked.
vi.useFakeTimers
Type:
() => VitestTo enable mocking timers, you need to call this method. It will wrap all further calls to timers (such as
setTimeout,setInterval,clearTimeout,clearInterval,nextTick,setImmediate,clearImmediate, andDate), untilvi.useRealTimers()is called.The implementation is based internally on
@sinonjs/fake-timers.
vi.useRealTimers
Type:
() => VitestWhen timers are run out, you may call this method to return mocked timers to its original implementations. All timers that were run before will not be restored.
MockInstance Methods
getMockName
Type:
() => stringUse it to return the name given to mock with method
.mockName(name).
mockClear
Type:
() => MockInstanceClears all information about every call. After calling it,
spy.mock.calls,spy.mock.returnswill return empty arrays. It is useful if you need to clean up spy between different assertions.If you want this method to be called before each test automatically, you can enable
clearMockssetting in config.
mockName
Type:
(name: string) => MockInstanceSets internal mock name. Useful to see what mock has failed the assertion.
mockImplementation
Type:
(fn: Function) => MockInstanceAccepts a function that will be used as an implementation of the mock.
For example:
const mockFn = vi.fn().mockImplementation(apples => apples + 1); // or: vi.fn(apples => apples + 1); const NelliesBucket = mockFn(0); const BobsBucket = mockFn(1); NelliesBucket === 1; // true BobsBucket === 2; // true mockFn.mock.calls[0][0] === 0; // true mockFn.mock.calls[1][0] === 1; // true
mockImplementationOnce
Type:
(fn: Function) => MockInstanceAccepts a function that will be used as an implementation of the mock for one call to the mocked function. Can be chained so that multiple function calls produce different results.
const myMockFn = vi .fn() .mockImplementationOnce(() => true) .mockImplementationOnce(() => false); myMockFn(); // true myMockFn(); // falseWhen the mocked function runs out of implementations, it will invoke the default implementation that was set with
vi.fn(() => defaultValue)or.mockImplementation(() => defaultValue)if they were called:const myMockFn = vi .fn(() => 'default') .mockImplementationOnce(() => 'first call') .mockImplementationOnce(() => 'second call'); // 'first call', 'second call', 'default', 'default' console.log(myMockFn(), myMockFn(), myMockFn(), myMockFn());
mockRejectedValue
Type:
(value: any) => MockInstanceAccepts an error that will be rejected, when async function will be called.
test('async test', async () => { const asyncMock = vi.fn().mockRejectedValue(new Error('Async error')); await asyncMock(); // throws "Async error" });
mockRejectedValueOnce
Type:
(value: any) => MockInstanceAccepts a value that will be rejected for one call to the mock function. If chained, every consecutive call will reject passed value.
test('async test', async () => { const asyncMock = vi .fn() .mockResolvedValueOnce('first call') .mockRejectedValueOnce(new Error('Async error')); await asyncMock(); // first call await asyncMock(); // throws "Async error" });
mockReset
Type:
() => MockInstanceDoes what
mockCleardoes and makes inner implementation as an empty function (returningundefined, when invoked). This is useful when you want to completely reset a mock back to its initial state.If you want this method to be called before each test automatically, you can enable
mockResetsetting in config.
mockRestore
Type:
() => MockInstanceDoes what
mockRestoredoes and restores inner implementation to the original function.Note that restoring mock from
vi.fn()will set implementation to an empty function that returnsundefined. Restoring avi.fn(impl)will restore implementation toimpl.If you want this method to be called before each test automatically, you can enable
restoreMockssetting in config.
mockResolvedValue
Type:
(value: any) => MockInstanceAccepts a value that will be resolved, when async function will be called.
test('async test', async () => { const asyncMock = vi.fn().mockResolvedValue(43); await asyncMock(); // 43 });
mockResolvedValueOnce
Type:
(value: any) => MockInstanceAccepts a value that will be resolved for one call to the mock function. If chained, every consecutive call will resolve passed value.
test('async test', async () => { const asyncMock = vi .fn() .mockResolvedValue('default') .mockResolvedValueOnce('first call') .mockResolvedValueOnce('second call'); await asyncMock(); // first call await asyncMock(); // second call await asyncMock(); // default await asyncMock(); // default });
mockReturnThis
Type:
() => MockInstanceSets inner implementation to return
thiscontext.
mockReturnValue
Type:
(value: any) => MockInstanceAccepts a value that will be returned whenever the mock function is called.
const mock = vi.fn(); mock.mockReturnValue(42); mock(); // 42 mock.mockReturnValue(43); mock(); // 43
mockReturnValueOnce
Type:
(value: any) => MockInstanceAccepts a value that will be returned whenever mock function is invoked. If chained, every consecutive call will return passed value. When there are no more
mockReturnValueOncevalues to use, calls a function specified bymockImplementationor othermockReturn*methods.const myMockFn = vi .fn() .mockReturnValue('default') .mockReturnValueOnce('first call') .mockReturnValueOnce('second call'); // 'first call', 'second call', 'default', 'default' console.log(myMockFn(), myMockFn(), myMockFn(), myMockFn());
MockInstance Properties
mock.calls
This is an array containing all arguments for each call. One item of the array is arguments of that call.
If a function was invoked twice with the following arguments fn(arg1, arg2), fn(arg3, arg4) in that order, then mock.calls will be:
[
['arg1', 'arg2'],
['arg3', 'arg4'],
];
mock.results
This is an array containing all values, that were returned from function. One item of the array is an object with properties type and value. Available types are:
'return'- function returned without throwing.'throw'- function threw a value.
The value property contains returned value or thrown error.
If function returned 'result1, then threw and error, then mock.results will be:
[
{
type: 'return',
value: 'result',
},
{
type: 'throw',
value: Error,
},
];
mock.instances
Currently, this property is not implemented.